Double Kernel estimation of sensitivities
نویسندگان
چکیده
This paper adresses the general issue of estimating the sensitivity of the expectation of a random variable with respect to a parameter characterizing its evolution. In finance for example, the sensitivities of the price of a contingent claim are called the Greeks. A new way of estimating the Greeks has been recently introduced by Elie, Fermanian and Touzi [6] through a randomization of the parameter of interest combined with non parametric estimation techniques. This paper studies another type of those estimators whose interest is to be closely related to the score function, which is well known to be the optimal Greek weight. This estimator relies on the use of two distinct kernel functions and the main interest of this paper is to provide its asymptotic properties. Under a little more stringent condition, its rate of convergence equals the one of those introduced in [6] and outperforms the finite differences estimator. In addition to the technical interest of the proofs, this result is very encouraging in the dynamic of creating new type of estimators for sensitivities.
منابع مشابه
Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model
We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...
متن کاملKernel Estimation of Quantile Sensitivities
Quantiles, also known as value-at-risks in the financial industry, are important measures of random performances. Quantile sensitivities provide information on how changes in input parameters affect output quantiles. They are very useful in risk management. In this article, we study the estimation of quantile sensitivities using stochastic simulation. We propose a kernel estimator and prove tha...
متن کاملIntegration by parts for point processes and Monte Carlo estimation
We develop an integration by parts technique for point processes, with application to the computation of sensitivities via Monte Carlo simulations in stochastic models with jumps. The method is applied to density estimation and to the construction of a modified kernel estimator which is less sensitive to variations of the bandwidth parameter than standard kernel estimators. Simulations are pres...
متن کاملConditional Monte Carlo Estimation of Quantile Sensitivities
E quantile sensitivities is important in many optimization applications, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming. Recently, Hong (Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118–130) derived a batched infinitesimal perturbation analysis estimator for quantile sensi...
متن کاملError estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.
متن کامل